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ABSTRACT 
 
This study compares an experimental watchstanding schedule derived at 

Naval Submarine Medical Research Laboratory (NSMRL) with the schedule 

currently used onboard the submarine USS HENRY M. JACKSON (SSBN 730 

GOLD).  It analyzes subjective and objective data to determine if the new 

schedule is compatible in an operational submarine environment.  This study 

reviews sleep and fatigue literature to emphasize important concepts needed to 

make schedule comparisons.  Results from this study indicate a need exists 

among the U.S. submarine force to employ an operational schedule which 

provides more sleep and which is in better alignment with human circadian 

rhythms, thus improving cognitive effectiveness.  One of the experimental 

schedules tested in this study yielded results similar to those of the existing 

submarine watchstanding schedule.  This experimental schedule employed a 

validated model of human performance and fatigue to assess individual cognitive 

effectiveness.  However, the results also indicate that the existing schedule is 

better suited in its accommodation of operational scheduling constraints which, in 

turn, allow watchstanders to receive more sleep.  Recommendations address the 

need for the U.S. submarine force to continue to pursue a watchstanding 

schedule that provides better sleep while still accommodating operational 

constraints. Recommendations also address improvements in experiment 

implementation which can be integrated into future studies. 
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EXECUTIVE SUMMARY 
 
Research regarding submariner sleep dates as far back as 1949.  Since 

then, operational demands have become more frequent for the U.S. submarine 

force and patrols are typically longer in duration.  Advancing technology requires 

increased awareness and vigilance among the submarine’s crew.  As such, 

today’s submarine force increasingly finds itself having to do more with less.   

Increased operational commitments coupled with declining submarine numbers 

since the end of the Cold War has placed added responsibility upon submarine 

officers and crews, which leads to the question: “How are these submariners 

sleeping?” 

This study is part of a project sponsored by the Naval Submarine Medical 

Research Laboratory (NSMRL) at Groton, Connecticut.  It is part of the final 

stage of a larger effort designed to determine if a new watchstanding schedule 

can improve circadian physiology, performance, and subjective appraisal of 

submariners while on board operational U.S. submarines.  Specifically, this study 

investigates whether submariners will be more effective, acquire more sleep, or 

notice improvements in their own performance while on the new watchstanding 

schedule.  Additionally, this study explores whether or not this new schedule is 

compatible in an operational submarine environment. 

The submarine crew onboard the USS HENRY M. JACKSON (SSBN 730 

GOLD) participated in the experiment.  Subjective measures included 

demographic and exit surveys along with crew feedback. Objective measures 

included sleep data from wrist-worn activity monitors.  These data were obtained 

while the crew operated on three different watchstanding schedules, two 

experimental schedules and one control schedule.  The control schedule was the 

18-hour watch schedule currently in use in the U.S. submarine fleet. 

Results of this study demonstrated that there were no significant 

improvements in either cognitive effectiveness or amount of daily sleep while on 

the new schedule.  Additionally, a majority of crew members did not like the new 
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schedule.  The new schedule attempted to compress watch periods together in 

order to widen periods for contiguous sleep.  However, little collateral work was 

completed during the compressed watch period, which meant unfinished work 

was carried over into the period set aside for sleep, defeating the intention of the 

new schedule’s design.  These results, taken together, demonstrated that the 

new schedule was not compatible in an operational submarine environment. 

The results of this study illustrated that a need exists among the U.S. 

submarine force to improve upon current watchstanding schedules.  A 

watchstanding schedule which allows for both better sleep hygiene and more 

time to complete required work should continue to be investigated.  Such a 

schedule may increase tangible quantities for an individual, such as improved 

memory and cognitive effectiveness, but may also improve other, less tangible 

factors, such as crew quality of life, morale, and the retention of qualified 

personnel. 

Although this at-sea trial of the experimental schedule was unsuccessful in 

improving submariner effectiveness and sleep hygiene, this study hopes to 

contribute to the sleep literature by highlighting the intricately related operational 

constraints imposed on U.S. submariners and the effects of various 

watchstanding schedules.  The contributions of this study will hopefully allow 

future schedules to be better suited to the operational submarine environment. 
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I. INTRODUCTION 

A. OVERVIEW 
As is true with all of the services and their respective communities, today’s 

submarine force increasingly finds itself having to do more with less.  Increased 

operational commitments, coupled with declining numbers of submarines since 

the end of the Cold War, have placed additional responsibility and demands upon 

submarine officers and crews.  As with any complex system requiring a human 

in-the-loop, this increased workload has come at a price: increased fatigue and 

reduced time for sleep and relaxation.  According to a research proposal 

submitted to BUMED by Dyche and Carr (2001, p. 3) entitled At Sea Trials of a 

New Submarine Watchstanding Schedule,  

Sailors have been required to navigate their ships around the clock 
for centuries. Watchstanding schedules have by necessity required 
sailors to function effectively within atypical work and sleep 
patterns. Successful maritime watchstanding has been achieved by 
training, high standards of discipline, and relatively high manning 
levels (particularly in warships). Today, the combined factors of 
increasing sophistication of modern military vessels and initiatives 
to reduce manning levels have greatly increased the amount of 
information mariners have to process. The increased demand on 
individuals' alertness and vigilance is exacerbated by sustained 
continuous operations. Very little is known about the impact of 
different watchstanding schedules on the quality of life and 
operational performance of submariners. In other populations, such 
as shift workers, there is considerable evidence that human 
experience and performance are significantly affected when sleep 
and work patterns are abnormal. 
As mentioned in this excerpt, and as illustrated by the large volume of 

related research literature, current information on the effects of fatigue on 

modern submarine operations is genuinely lacking.  But although information and 

objective data regarding this critical area is lacking, interest is not.  In fact, as a 

memorandum from the Commander of Submarine Group TWO to the 

Commanding Officer of the Office of Naval Research (2000) states: 

Sleep fatigue and its impact on performance is a subject of interest 
to the U.S. Navy, and, in particular, to the Submarine Force.  



2 

Underway, the 18 hour work/sleep cycle on submarines may 
conflict with the human body’s normal biological wake/sleep cycle 
and current evidence suggests that aligning the submarine 
watchstanding cycle with the human body’s wake/sleep cycle may 
lower watchstanding fatigue and enhance individual performance. 

This thesis, in conjunction with the Naval Submarine Medical Research 

Laboratory (NSMRL), was designed to address the need for research exploring 

submariner fatigue, and in addition, attempts to find ways to lower watchstander 

fatigue levels and improve individual performance and morale. 

 

B. BACKGROUND 
This thesis is one part of a three-part project sponsored by the Naval 

Submarine Medical Research Laboratory (NSMRL) at Groton, Connecticut.  As 

part of the final stage of a larger effort, it is designed to determine if a new 

watchstanding schedule can significantly improve circadian physiology, 

performance, and submariner perceptions of their ability to perform their jobs 

while on board operational submarines. NSMRL’s three-part project was 

designed to study: (1) approximately 350 surveys that assessed sleep quality 

and fatigue on active duty submariners; (2) a laboratory analysis of three 

separate and distinct watchstanding schedules on submariner physiology and 

performance; and (3) at-sea trials in support of laboratory findings. This thesis 

constitutes the latter tier, a test and evaluation of the laboratory product devised 

in the second tier aboard an operational U.S. submarine at sea (Miller, Dyche, 

Cardenas, & Carr, 2003). 

 

C. OBJECTIVES 
This thesis will compare the current 18 hour, three-section watchstanding 

schedule used by U.S. submarines (Stolgitis, 1969) to a laboratory-derived 

alternative schedule that more closely simulates a normal 24 hour cycle (Miller et 

al., 2003).  Comparisons will be based on both subjective and objective 

observations, including surveys and crew feedback, in addition to more objective 

measures, such as sleep data obtained from activity monitors worn on the wrist. 
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D. PROBLEM STATEMENT 
The hypotheses of this study are: 

1. Submariners will be more effective on the experimental schedule, 

2. Submariners will acquire more sleep on the experimental schedule, 

3. Submariners will notice improvements in their own performance 

while on the experimental schedule, 

4. The experimental watchstanding schedule will be compatible to an 

operational submarine schedule. 

 

E. SCOPE, LIMITATIONS, AND ASSUMPTIONS 
The ultimate goal of the study would be to extrapolate any significant 

findings to all crew members of the U.S. submarine force who stand three section 

watches.  However, due to funding and time constraints, this experiment was 

limited to the crew of a single ballistic missile submarine (SSBN).  An SSBN was 

chosen because it was the only platform available and also because an SSBN 

offers a fairly routine operational schedule in which to perform such an 

experiment.  However, it should be acknowledged that by not conducting a 

similar study onboard a fast attack submarine (SSN), any findings reported here 

may not generalize to the entire submarine force. 

Although the type of submarine used in this study generally implements a 

three section watch rotation, this procedure did not apply to all watch stations 

during the experimental period.  Throughout the course of an underway period, 

more watchstanders would be training and would eventually become qualified for 

their respective watch stations.  Therefore, these additional watchstanders would 

allow for more flexible watch rotations, including a modified three section watch 

which includes a “kick out”.  A “kick out” is when a fourth watchstander, usually a 

senior crew member, stands watch during a certain period, such as from 1800 to 

2400.  This break provides a relief to the three-section watchstander who would 

normally have to stand that “kick out’s” watch.  Thus, participant selection initially 
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included only three section watchstanders.  However, as the experiment 

progressed, “kick outs” were unforeseeable and unavoidable, and may have 

slightly inflated sleep quantity. 

Although collection of sleep data using polysomnograph (PSG) would 

have been ideal, given the field setting for the thesis, wrist-mounted avtivity 

monitors were used to obtain sleep information.  Actigraphy is well established as 

a means to assess sleep-wake discrimination.  Concordance rates for PSG and 

actigraphy have improved over the past decade from roughly 88% (Cole, Kripke, 

Gruen, Mullaney, & Gillin, 1992) to approximately 94% (Jean-Louis, Kripke, 

Mason, Elliott, & Youngstedt, 2001) in laboratory based sleep studies.  

Actigraphy requires less technical training than polysomnography and is portable 

enough to use in the field.  For these reasons, actigraphy was used to measure 

sleep which was the major measure of performance (MOP) for the thesis. 

The Department of Defense (DoD) “Sleep, Activity, Fatigue, and Task 

Effectiveness” (SAFTE) model (see Chapter II.E), was implemented using a 

Microsoft® Windows program called the “Fatigue Avoidance Scheduling Tool”© 

(FAST).  FAST© is typically used to predict and quantify crew cognitive 

effectiveness (Miller et al., 2003).  Cognitive effectiveness equated to scores on a 

standardized psychomotor vigilance task (PVT), averaged by day, provides a 

validated measure of effectiveness (MOE) for submariners.  Ideally, submarine 

crews should be effective during as much of the day as possible, given that they 

may be required to assist with emergencies at a moment’s notice.  Both the 

strengths and weaknesses of the SAFTE model are described in more detail in 

Section II.E. 

 

F. THESIS ORGANIZATION 
Chapter II reviews pertinent literature on major concepts related to sleep 

deprivation and shift work.  Chapter III discusses the methodology employed to 

conduct the experiment.  Chapter IV describes the statistical approaches used in 
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the analysis.  Finally, Chapter V concludes with results obtained from the 

analysis and provides recommendations for future research. 
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II. LITERATURE REVIEW 

A. OVERVIEW 
Sleep research is an expanding field of study.  Recent research and 

innovative techniques in recent years have increased our understanding of sleep 

and its importance in our lives.  This section will introduce some important facts 

about sleep and the effects of sleep deprivation, in order to develop a better 

understanding and appreciation of the significance of this study.  Section B 

describes the mechanisms of sleep and circadian rhythms.  Section C discusses 

the effects of shift work on circadian rhythms.  Section D outlines consequences 

of sleep deprivation on an individual’s health and performance.  Section E briefly 

explains the model this study uses to obtain cognitive effectiveness for schedule 

comparisons.  Finally, Section F concludes by pointing out contributions from 

other work that relates to the study of submariner sleep. 

 

B. SLEEP 
Humans, like all higher organisms, require sleep in order to perform even 

the most basic functions.  Sleep is the mechanism by which our body restores 

itself through the secretion of growth hormones and sleep may contribute to 

memory consolidation (National Sleep Foundation [NSF], 2004).  When we 

awaken from a “good night’s sleep”, we feel “refreshed, alert, and ready to face 

daily challenges” (NSF, 2004).  Unfortunately, in our increasingly fast-paced and 

busy society, a good night’s sleep is becoming more and more of a luxury.  In 

fact, a 2002 National Sleep Foundation (NSF) “Sleep in America” study found 

that roughly 74% of American adults experience a problem sleeping several 

nights a week (or more).  Approximately 39% of adults get less than seven hours 

of sleep each weeknight, while 37% are so sleepy during the day that sleep loss 

can significantly interfere with daily activities.  If the average American is 

experiencing problems obtaining enough sleep, one can only imagine the sleep 

problems experienced by U.S. Navy submarine crews.  The sleep-related 
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problems typically found in the civilian population most likely extend to the U.S. 

military, particularly those engaged in 24-hour operations while underway. 

The National Sleep Foundation suggests that a typical adult requires (on 

average) between 7 and 9 hours of sleep per day (National Sleep Foundation, 

2004).  Table 1 (below) presents the average sleep needs during an average 

human lifecycle.  And although Table 1 presents “average” sleep needs, 

research suggests that sleep needs vary by individual (National Sleep 

Foundation, 2004).  While some people may appear to “make do” with only 4 or 5 

hours of sleep for several weeks or months with few negative effects on their 

cognitive, physical, and motor performance (although their mood and motivation 

may suffer), most people prefer and need 7 to 8 hours of continuous sleep per 

night (Giam, 1997).  Younger individuals (many of whom operate submarines), 

require more sleep and a longer rest period to recover completely from additional 

physical stressors (Giam, 1997).  

 

Infants/Babies* 0 – 2 months: 10.5 - 18.5 hours 
2 - 12 months: 14 - 15 hours 

Toddlers/Children*  12 -18 months: 13 - 15 hours 
18 months - 3 years: 12 - 14 hours  
3 - 5 years: 11 - 13 hours  
5 -12 years: 9 - 11 hours 

Adolescents  8.5 - 9.5 hours 
Adults/Older Persons  On average:  7 - 9 hours 
*Total time includes naps. 

Table 1. Sleep Needs Over Our Life Cycle.  (From: National Sleep 
Foundation, 2004). 

 

1. Mechanism of Sleep 
As a person sleeps, we undergo several predictable and measurable 

sleep stages, commonly referred to as Rapid Eye Movement (REM) sleep and 

non-REM (NREM) sleep.  Roughly 75% of the sleep cycle is spent in four stages 

of non-REM sleep, which ranges from light dozing to deep sleep.  The remaining 
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25% of the sleep cycle is spent in REM sleep where much dreaming occurs.  A 

description of each stage of sleep, including physiological effects, is presented 

(below) in Table 1  (National Sleep Foundation, 2004).  Notice that perhaps the 

most restorative stage of sleep is Stage 4, during which human growth hormone 

is released.  As can be seen, REM sleep is also important for performance during 

the day, and research suggests that this stage may contribute to memory 

consolidation (National Sleep Foundation, 2004). 

NREM: 75% of night As we begin to fall asleep, we enter NREM, which is 
composed of Stages 1-4.  

Stage 1 Light sleep; between being awake and entering sleep  
Stage 2 Onset of sleep; becoming disengaged with the 

environment; breathing and heart rate are regular and 
body temperature goes down  

Stage 3 & 4 Deepest and most restorative sleep; blood pressure 
drops; breathing slower; energy regained; and hormones 
are released for growth and development  

REM: 25% of night First occurs about 90 minutes after falling asleep and 
increases over later part of night; necessary for providing 
energy to brain and body; brain is active and dreams 
occur as eyes dart back and forth; bodies become 
immobile and relaxed; muscles shut down; breathing and 
heart rate may become irregular; important to daytime 
performance and may contribute to memory 
consolidation  

Table 2. Explanation of Sleep Stages. (From: National Sleep 
Foundation, 2004). 

 

An average sleep cycle, which consists of transitioning from stage 1 

through stage 4 then back to stage 1 sleep, followed by REM sleep, typically 

requires approximately ninety minutes (Folkard & Barton, 1993).  A typical 8-hour 

sleep cycle is shown in Figure 1 (below).  The period of deepest sleep (stage 4), 

typically occurs within the first few hours of a sleep episode.  As an individual 

progresses through the sleep cycle, REM episodes typically increase in length 

and non-REM sleep becomes shallower.  This pattern is shown in Figure 1 by the 
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wider REM periods and more frequent occurrences of awakenings as the person 

approaches the end of the sleep period. 

 

 
Figure 1. A Typical Sleep Cycle.  (From: National Sleep Foundation, 

2004). 
 

2. Circadian Rhythms 
Circadian rhythms, from the Latin “circa dies” which literally means “about 

a day”, are those daily rhythms that govern much of our physiology and 

performance (Winget, DeRoshia, & Holley, 1985, p. 498).  This internal body 

clock is located in the brain’s hypothalamus and regulates daily variations in 

physiological processes, including sleep/wakefulness, body temperature, the 

release of hormones, as well as cognitive performance (Neri, Dinges, & 

Rosekind, 1997).  Our mental alertness and cognitive performance closely 

corresponds to this daily fluctuation of our core body temperature (Neri et al., 

1997).  Thus, for a person on a typical sleep/wake schedule, maximum 

sleepiness occurs in the early morning hours, while a second period of increased 

sleepiness occurs in the midafternoon (Neri et al., 1997).  Similarly, the maximum 

level of alertness typically occurs in the late morning and early evening. A 

simplified diagram of a typical circadian rhythm and its effect on alertness is 

presented in Figure 2. 
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Figure 2. A Simple Diagram of Circadian Rhythm Affect on 
Alertness (From: National Sleep Foundation, 2004). 

 

However, circadian rhythms do not always follow a 24-hour cycle.  The 

human internal clock receives environmental clues, or zeitgebers, which include 

the daily alteration of light and dark and periodic social contact (or interactions 

such as meal times), which act as synchronizers (Winget et al., 1985,).  In the 

absence of environmental time clues, human circadian rhythms will extend to a 

25-hour cycle (Neri et al., 1997).  This phenomenon helps to explain why it is 

easier for many individuals to stay up later (i.e., lengthening the day, a phase 

delay) rather than trying to go to sleep earlier (i.e., shortening the day, a phase 

advance).  Whenever an individual experiences an abrupt phase delay or 

advance (such as changing time zones or shiftwork schedules such as 

encountered when working nights), problems can arise.  Problems occur 

because it sometimes takes days or even weeks for the internal circadian clock 

to adapt physiologically to a new schedule (Neri et al., 1997). 

 

C. THE EFFECTS OF ROTATING SHIFTS ON CIRCADIAN RHYTHMS 
Rotating shifts are those in which a worker works on a particular shift for a 

period of time (e.g., day shift), then switches to a different shift (e.g., afternoon or 

evening) for a given period of time, and so on.  A rotating shift schedule may 

employ either a forward or backward rotation: forward rotation moves clockwise, 
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from day to afternoon to night shift; conversely, a backward rotation moves 

counterclockwise, from day to night to afternoon shift (Rosa & Colligan, 1997). 

Two factors which can affect one’s adaptation to a rotating schedule are 

the speed and direction of the rotation (Rosa & Colligan, 1997).  A fast rotation, 

which would change shifts every two days, does not allow sufficient time for 

individual circadian rhythms to adjust.  Also, some researchers suggest that a 

forward rotation is better in helping a worker adjust to new sleep periods than a 

backward rotation (because it is typically easier to go to bed and wake up later 

than earlier) (Rosa & Colligan, 1997).  But regardless of the type of rotation, both 

forward and backward rotating schedules can deleteriously affect worker 

performance (Rosa & Colligan, 1997). 

Such forward and backward shift rotations, unfortunately, are regularly 

used in many military environments.  For example, the three-section 

watchstanding schedule currently used in the U.S. submarine fleet is a rapid, 

backward rotating shift schedule with no ”days off” between shifts.  For example, 

a watchstander may have duty for 6 hours during the late morning hours (0600 to 

1200), have 12 hours with no duty, and then stand the night shift, or mid watch 

(2400 to 0600) that night.  An example of this kind of schedule, annotated as 

Schedule 3, is presented in  on page 29.  This schedule, in conjunction with an 

absence of photic cues (such as sunlight), can cause the circadian rhythms of 

certain crew members to desynchronize from the normal 24-hour daily schedule 

and synchronize to a period of about 24.5 hours (Miller et al., 2003), otherwise 

known as “circadian free run”.  Thus, some crew members experience a 

circadian phase lag that accumulates about 0.5 hours a day (compared to the 

ship’s 24-hour schedule), which in turn can reportedly induce a feeling of illness 

or depression for these crew members (Miller et al., 2003). 

 

D. CONSEQUENCES OF SLEEP DEPRIVATION 
Sleep deprivation can be classified either as total sleep deprivation (in 

which an individual is denied sleep for at least 24 hours) or partial sleep 
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deprivation (which is any sleep less than the “usual” amount for the individual) 

(Giam, 1997).  An illustration of how partial sleep deprivation can be cumulative, 

commonly referred to as sleep debt, is illustrated in Figure 3 (below).  Belenky et 

al. (2002) conducted a study in which 66 volunteers were divided into four 

groups, which were then restricted in their amount of daily sleep for 7 days.  

Following this restriction, their reaction times were assessed using a 

psychomotor vigilance task (PVT).  The PVT is extremely sensitive to sleep 

deprivation and is an indicator of “real world” task decrement (Dorian, Rogers, & 

Dinges, in press).  As shown in Figure 3, the legend in the lower right corner 

represents daily hours of sleep for each of the different groups.  As the 

downward trend in mean PVT responses indicate, for those with 7 hours or less 

of sleep per day, performance cumulatively decreases.  In fact, chronic restriction 

of sleep to 6 hours or less per night produces cognitive performance deficits 

equivalent of up to 2 nights of total sleep deprivation (Van Dongen, Maislin, 

Mullington, & Dinges, 2003).  Even more alarming is that the subjective 

sleepiness ratings (i.e., how each individual rated their perceived PVT 

performance), suggest that sleep deprived individuals are largely unaware of 

their increasing cognitive and physical performance deficits (Van Dongen et al., 

2003). 
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Figure 3. Mean Psychomotor Vigilance Task Speed (and Standard Error) 
Across Days as a Function of Time in Bed Group. (From: 
Belenky et al., 2002, p. 6). 

 

People exhibit signs of sleep deprivation differently.  Generally speaking, 

however, symptoms of sleep deprivation become more prevalent and persistent 

as sleep debt accumulates (Giam, 1997).  Some major sleep deprivation 

symptoms mentioned by Giam (1997, pp. 91-92) include: 

• Negative mood and motivational changes 

• Impaired attention and alertness 

• Short-term memory loss 

• Variable and slower responses 

• Visual/auditory hallucinations 

• Failure to complete routines 

• Impaired task performance 
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• Increased sensation of physical exertion 

• Increase and subsequent cessation of bickering. 

Furthermore, laboratory studies of sleep deprivation indicate that the most 

sensitive indicator of sleep deprivation is impaired task performance.  For 

example, cognitive operations, such as logical reasoning, mathematical 

operations, short term memory, and decision making (Hursh & Bell, 2001), all 

suffer with increasing levels of sleep deprivation. 

Dawson and Reid (1997) in an experimental comparison between the 

effects of alcohol ingestion and sleep deprivation, found similarities between the 

two in various measures of performance, including reduced motor skills, vigilance 

degradation, and increased response latency in a logical reasoning task.  These 

studies suggest that, following 17-18 hours of sleep deprivation, motor and 

cognitive performance is equivalent to (or greater than) that of a person with a 

blood alcohol of concentration (BAC) of 0.05% (the legal driving limit in 

Australia).  In addition, after 20-25 hours of wakefulness, performance 

impairment is equivalent to (or greater than) a BAC of 0.10% (the legal driving 

limit in many U.S. states). 

In summary, the cumulative effects of sleep deprivation can impart 

performance degradations in both motor and cognitive functioning, and can lead 

to mental fatigue.  Mental fatigue, as defined by Evans, Mackie, and Wylie (1991, 

p. 7) is unlike physical fatigue because it “is concerned with the individual’s 

reduced capability for performing cognitive tasks in a timely and error-free 

manner.”  Mental fatigue impacts everyone, regardless of rank or rate, and can 

be “a strong disrupter of command level performance” (Hursh & Bell, 2001).  If 

inadequate attention is given to opportunities for allowing the crew to get an 

adequate amount of sleep, then maintaining a high level of alertness will become 

difficult, with the result that the submarine crew’s performance inevitably suffers. 
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E. THE SLEEP, ACTIVITY, FATIGUE, AND TASK EFFECTIVENESS 
MODEL (SAFTE) 
The Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) model, 

similar to the Walter Reed Army Institute of Research’s (WRAIR) Sleep 

Performance Model (SPM), can be modified to serve several functions.  The 

model uses sleep history data from individuals to estimate the existing cognitive 

capacity, or predicted effectiveness, of both the individual and the crew (Hursh et 

al., 2004).  In addition, this model can be used to provide feedback to an 

individual who may be in need of sleep.  It can also help in the selection of 

individuals or units for a particular operation or mission, and can also apply 

hypothetical or prospective work/sleep schedules which can be used to identify 

and alleviate potential performance problems.  Lastly, this model can help in 

optimizing operational planning and management, or, conversely, provide a 

“weighting” function for individual performance in complex operational scenario 

models (Hursh et al., 2004).  The method used in the SAFTE model was 

employed in this study to derive individual submariner effectiveness. 

A conceptual schematic of the SAFTE model is presented in Figure 4.  At 

the heart of the model is the “sleep reservoir”, which maintains a balance of 

effective performance “units”.  Under fully rested, optimal conditions, a person 

has a finite, maximal capacity to perform (Hursh et al., 2004).  When an 

individual is awake, the contents of this reservoir are slowly depleted according 

to a performance-use function, which specifies a linear decrease in the cognitive 

reservoir with each minute awake (Hursh & Bell, 2001).  During sleep, the sleep 

reservoir is replenished by these units based on a sleep accumulation function 

which is responsive to an individual’s sleep debt, or, more simply, the difference 

between the current level of the sleep reservoir and its maximum capacity, sleep 

intensity, and sleep quantity (Hursh & Bell, 2001).  Sleep intensity is governed by 

both the time of day (circadian processes) and individual sleep debt (Hursh et al., 

2004).  Sleep quality, or conversely, sleep fragmentation, also affects the sleep 

accumulation function by introducing a penalty for interruptions in sleep.  

Performance effectiveness, which becomes the model’s output, can be obtained 
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by summing three terms: the level of the sleep reservoir; the individual’s 

circadian rhythm; and general stress effects (Hursh & Bell, 2001).  The inertia 

component in Figure 4 represents presumed transient “post-sleep decay” of 

performance (Hursh et al., 2004).   
 

 

Figure 4. Block Diagram of SAFTE Model  (From: Hursh et al., 2004, p. 
2). 

 

Nguyen (2002) identified several strengths of the SAFTE model.  One 

strength identified is that the SAFTE model predicts the normal decline in sleep 

intensity over the sleep period and the normal equilibrium of performance under 

less than optimal schedules of sleep.  In addition, this model integrates a multi-

oscillator (i.e., the sum of two cosine waves) circadian process to predict 

circadian variations in sleep quality, limitations on performance under schedules 

that require sleep during the day, and sleep inertia that is proportional to sleep 
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debt.  Additionally, this model takes into account changes in time zones and the 

effects of shiftwork (Nguyen, 2002). 

The SAFTE model utilizes two sets of parameters that can be used to 

predict individual performance on a PVT, or the average cognitive throughput 

(correct answers per minute) of an individual (Hursh et al., 2004).  Actual PVT 

speeds (obtained from a sleep dose-response study) were compared to those 

predicted by SAFTE/FAST©.  The results can be seen in Figure 5.  The SAFTE 

model predictions closely and significantly corresponded to actual PVT scores 

( 2 0.94R = ).  The PVT has a high degree of reliability and validity, it is not 

dependent on individual aptitude, and because it can be administered repeatedly, 

it can be used to quantify the effects of sleep loss on an individual’s 

neurobehavioral capabilities across a number of days (Dorian et al., in press).  

Thus, the SAFTE model, incorporated in FAST©, provides a useful prediction of 

“real-world” performance. 

 

Figure 5. A Comparison of Actual PVT Speed to Predicted PVT Speed 
from a Sleep Dose Response Study. (From: Hursh et al., 2004, 
p. 8). 
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All models of sleep and performance, in fact, any model of sleep and 

performance, have shortcomings and limitations, particularly if a model is going 

to be used to make predictions. The SAFTE/FAST© model, as used in this study, 

has three major limitations.  First, the model does not provide an estimate of 

group variance regarding the average performance prediction (Hursh et al., 

2004), and only provides a point estimate for performance.  Second, the model 

does not incorporate any individual difference parameters, such as age, that 

relate to full performance (Hursh et al., 2004).  Last, and perhaps most 

importantly, the SAFTE model does not take into account the effects of 

pharmacological countermeasures, such as stimulants (e.g., caffeine) that extend 

performance, nor the effects of sedatives (e.g., clonazepam) or sleep agents 

(e.g., melatonin) to enhance sleep (Hursh et al., 2004).  However, the impact of 

the first two limitations can be minimized by using a repeated measures design, 

as was done in this study.  Because we could not assess the impact of any 

pharmacological agents, we presumed that the use of stimulants and sedatives 

were similar across all schedules. 

 

F. RESEARCH ON SUBMARINER SLEEP 
In 1949, renowned sleep researcher, Nathaniel Kleitman, conducted a 

survey and observed the sleep, work, and recreational habits of the submarine 

crew onboard the USS DOGFISH (SS 350) who stood the traditional 8 and 4 

watch schedule (Kleitman, 1949).  He believed that a submarine, as compared to 

other warships, presented the most conducive environment in which a 

maintained shift in the sleep-wakefulness cycle could be established.  This belief 

was based on several factors, including: lack of reveille; rarely going to general 

quarters requiring the entire crew to be awake; daylight sleep was permitted; 

most work was done in artificial light; and watch and meal rotation was at the 

discretion of the Commanding Officer.   However, Kleitman also realized that 

there were factors that hampered his work.  These factors included the shore-

type schedule of meals and recreation, and the inability of the men to achieve an 

uninterrupted sleep period of more than 7 hours duration (Kleitman, 1949).  The 
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goal of his research was threefold: to suggest remedies for these unfavorable 

conditions, to find out how the crew of a submarine actually operated, and to 

determine whether misgivings concerning the adjustment of the men to a shifted 

sleep-wake cycle were justified (Kleitman, 1949). 

One of Kleitman’s results suggested that “…the routine of living on a 

typical submarine underway revealed an incomplete adjustment of the personnel 

to the requirement of an even degree of alertness during the 24-hour cycle of day 

and night and an absence of conditions conducive to such an adjustment” 

(Kleitman, 1949, p. 337).  He suggested investigations be made of the variation 

in efficiency under the present schedule as well as under experimental 

modifications of a crew’s typical routine. 

Kleitman also went so far as to propose two watchstanding schedules that 

took into account meal times; one based on a 24-hour cycle and the other on a 

12-hour cycle.  Miller et al. (2003, p. 54) identified five objectives Kleitman used 

to construct these schedules: 

• “Increased alertness and efficiency as a result of adjustment of working 

hours so that maximum body temperature might more easily coincide 

with them. 

• Provision for 10-12 continuous hours off, during which long 

uninterrupted sleep may be secured. 

• Watches of shorter duration, still providing for a total of eight hours’ 

watch for each man. 

• A schedule so nearly impartial that the watch periods might be fixed for 

each section throughout the cruise. 

• A hot meal offered the men on each section before beginning their first 

watch of the day. 

• A dinner hour so arranged as to make it possible for the men of all 

sections to eat their principal and best balanced meal of the day 

without disrupting sleep or breaking into a watch period (ibid.).” 
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Kleitman, in his research summary, identified two independent, though 

complementary, future studies that might contribute to good sleep and the well-

being and efficiency of submarine personnel.  One study suggested the 

establishment of a regular sleep-wakefulness cycle which conformed to the 

ship’s routine.  The other study suggested that the restful and restorative sleep 

could be achieved through the proper design and arrangement of sleeping 

equipment (e.g., making the bunks wider and longer). 

In 1969, Stolgitis compared the common 4/8 hour work/rest cycle that was 

being used by the U.S. Navy surface fleet to the less common 6/12 hour 

work/rest cycle adopted by the U.S. nuclear submarine force.  Specifically, he 

attempted to determine the relative capabilities of the two watch systems to 

provide the adequate sleep necessary for enabling the ship’s crew to reliably and 

consistently perform their daily routines (Stolgitis, 1969).  Stolgitis found the 6/12 

system to be better for providing adequate sleep periods by establishing longer 

uninterrupted hours of sleep.  However, Stolgitis’s finding was based solely on an 

arithmetic comparison of contiguous sleep periods and not on empirical data.  

Therefore, the effects of circadian desynchrony were not taken into account 

when he concluded that the 6/12 cycle was better than the 4/8 cycle. 

In 1999, efforts were made within the Royal Australian Navy (RAN) to 

examine stress in submariners and fatigue among Navy personnel (Chapman, 

2001).  Crew watch-keeping and rest cycles were examined onboard a RAN 

COLLINS-class diesel submarine, with the goal of establishing policy and 

guidelines for fatigue management.  A submarine psychologist joined the crew of 

two COLLINS-class submarines to collect actigraphy data, saliva samples (used 

to assess melatonin levels), and both audio and visual recordings of the crew.  

The purpose of the study was to: 

• Measure personnel sleep-wake cycles, 

• Enable quantification of fatigue and sleep debt amongst personnel in 

an at-sea environment, 
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• Pilot test the research methodology in an at-sea environment aboard 

an operational submarine and determine the suitability of the 

methodology for further use during different types of submarine 

operations, and 

• Obtain baseline data from which to develop a fatigue management 

policy tailored to the operation of the COLLINS-class platform. 

Many recommendations, particularly within the areas of fatigue 

management, education, and policy development resulted from the study.  

However, the recommendations which were most pertinent to the scope of the 

current study were in the area of policy development.  Chapman  recommended: 

…that a comprehensive fatigue management policy be developed 
in collaboration with an industry expert that addresses the following: 
a. watch systems and scheduling, sleep management and strategic 

napping in the COLLINS-class environment; 
 b. development, practice and adherence to sleep management 

plans for personnel; 
c. exploring the inclusion of personnel redundancies for those 

departments experiencing high cognitive load (to assist in more 
effective fatigue management); and 

d. modification of task rotation and time of completion to measure 
cognitive workload and minimise effects of sleep loss (2001, p. 
4). 

In 2001, Blassingame analyzed 143 surveys obtained from enlisted U.S. 

submariners with at least one year of operational experience onboard a 

submarine in order to gain insight into their sleeping habits (Blassingame, 2001).  

The survey was designed by Naval Submarine Medical Research Laboratory 

(NSMRL), Groton, CT, to determine whether there were differences in the 

reported amount of sleep between sailors in four different operational 

environments: at sea, in port, on shore duty, and on leave. 

Blassingame’s analysis concluded that there were discernable differences 

in the quality and quantity of sleep between the different environments.  Of the 

four operational conditions evaluated, the “at sea” condition was the most 
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different from all other conditions (Blassingame, 2001).  Submariners reported 

getting less sleep while “at sea” than in the other conditions and had much less 

control over the amount of sleep they got when deployed. 

In 2002, Gamboa analyzed survey responses from 258 submariners using 

a combination of Blassingame’s survey data and additional survey responses 

obtained onboard the USS CONNECTICUT (SSN 22) (Gamboa, 2002).  The 

goal of his research was to determine if a shift in working environment (from 

shore duty to sea duty) had an effect on enlisted submariner sleep patterns.  

Additionally, Gamboa attempted to determine whether career longevity had an 

effect on self-reported optimal sleep duration. 

Gamboa’s research (2002) revealed that sleep patterns were reported to 

be more disturbed in the underway environment.  One interesting finding was 

that crew members reported needing fewer hours of sleep to function optimally in 

the underway working environment then when they were in a shore duty working 

environment.  As was discussed in Section D, sleep deprived individuals are 

largely unaware of the increasing cognitive deficits (Van Dongen et al., 2003).  In 

fact, Gamboa (2002, p. 2) identified that: 

The individual warfighter may, over time, subsequently perceive a 
need for fewer hours of sleep to function at that minimum level. 
This behavioral change that corresponds to a "perceived" 
physiological conditioning illustrates cognitive dissonance reduction 
theory, which states that an individual will attempt to remedy a 
perceived “dissonance” or “disconnect” between two or more 
beliefs. In this case, the person is attempting to reduce the 
perceived dissonance between the environment, that of continual 
sleep deprivation, which tends to be the norm, and the belief that 
the individual needs a certain number of hours to function optimally. 
 

Festinger’s cognitive dissonance reduction theory (as cited in Gamboa, 

2002) helped to explain this phenomenon.  In addition, Gamboa’s results 

indicated that rank, time in service, sea time, and self-reported optimal sleep 

duration had an effect on respondent sleep patterns.  For example, those 

submariners with more experience reported that they needed less sleep to 

function while underway.  Festinger’s cognitive dissonance reduction theory may 
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help explain why the current 6/12 watchstanding schedule has, until recent years, 

received little attention within the sleep research community. 

An experiment was conducted in 2001 at the Chronobiology and Sleep 

Lab (CASL) of the Warfighter Fatigue Countermeasures Research and 

Development Program, Air Force Research Laboratory, Brooks AFB TX (Miller, 

Dyche, Cardenas, & Carr, 2003).  Nine male enlisted submariners voluntarily 

participated as research subjects.  The participants spent three 8-day periods in 

the CASL and were exposed to three different watchstanding schedules: 1) the 

18-hour watch schedule currently in use by the U.S. submarine fleet, 2) the 

traditional maritime watch schedule used by some Coast Guard cutter crew 

members, and 3) the alternative watch schedule analyzed in this study (refer to  

on page 29). 

Five hypotheses were tested in this experiment.  Conclusions formulated 

after the completion of the experiment supported the following hypotheses (Miller 

et al., 2003): 

• 24-hour work-rest cycles were in better physiological alignment with 

circadian rhythms and produced better performance than did an 18-

hour work-rest cycle. 

• Given the same average amount of time in bed and average time 

spent on watch per 24 hours, both sleep quality and sleep quantity 

were worse in an 18-hour work-rest schedule than in 24-hour work-rest 

cycles. 

• Given the same average amount of time in bed and average time 

spent on watch per 24 hours, both sleep quality and sleep quantity 

were worse in a standard maritime work-rest schedule than in an 

alternative 24-hour work-rest cycle. 

• And lastly, given the same average amount of time in bed and average 

time spent on watch per 24 hours, individual mood was worse in a 
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standard maritime work-rest schedule than in an alternative 24-hour 

work-rest cycle. 

After combining the results of the study with information available in research 

literature, Miller et al. provided watchstanding schedules to be tested in at-sea 

trials.  The schedule(s) which were recommended depended upon its function, 

such as lengthening the watch to achieve more time off watch or to 

accommodate 24-hour operations in a geographically-confined, limited-crew 

number situation, etc.   

As illustrated by this literature review, current information on the effects of 

fatigue on modern submarine operations is seriously lacking.  This thesis is 

designed to empirically assess the utility of a new watchstanding schedule.  The 

compressed 6-hour watchstanding schedule, referred to by Miller et al. (2003) as 

the “A Schedule”, is the schedule which was used in the at-sea trial 

implementation. 
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III. METHOD 

This section discusses the experimental design, participants, apparatus, 

and procedure.  Data formatting concludes this section and is intended to provide 

a smooth transition into the next section which discusses analytical results. 

 

A. EXPERIMENTAL DESIGN 
Two SSN submarines and two SSBN submarines were originally going to 

be used for the at-sea trials portion of this experiment as outlined in a research 

proposal by NSMRL (Dyche & Carr, 2001).  Due to funding constraints and 

submarine availability, it was decided that one SSBN would serve as both the 

control and experimental group. The experimental design therefore became a 

repeated-measures design. 

The Commanding Officer of the USS HENRY M. JACKSON (SSBN 730 

GOLD) volunteered his ship for the experiment.  LT Chris Duplessis, M.D., an 

Undersea Medical Officer (UMO) from NSMRL, joined the submarine’s crew for 

approximately one month to conduct the experiment.  The experiment started 

October 29, 2003 and lasted until December 2, 2003. 

Although this study was originally intended to assess two watchstanding 

schedules (one experimental and one regular schedule), the experimental 

schedule was modified during the experiment in response to command element 

suggestions that modifying the experimental schedule would better coincide with 

the ship’s schedule.  Instead of the 24-hour off period occurring from noon to 

noon, it was suggested (and implemented) that a modified experimental schedule 

have off from midnight to midnight.  Because of this change, a comparison of the 

three watchstanding schedules ultimately tested is shown in .  Blackened boxes 

indicate on-watch periods while white boxes indicate off-watch periods. 
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Watch
Section 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18

1
2
3

06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24

Watch
Section 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18

1
2
3

06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24

Watch
Section 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18 00-06 12-18

1
2
3

06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24 06-12 18-24

Day 5 Day 6 Day 7
Schedule 3:  Current Watchstanding Schedule

Day 1 Day 2 Day 3 Day 4

Schedule 1:  Modified Experimental Watchstanding Schedule
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Schedule 2:  Original Experimental Watchstanding Schedule
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

 

Figure 6. Three Watchstanding Schedules Used in the Study. 
 

Schedule 1, the modified experimental schedule, was tested for 14 days.  

Schedule 2, the original experimental watchstanding schedule, was tested for 6 

days.  Schedule 3, the current submarine watchstanding schedule being used in 

the fleet, was tested for 12 days.  The experiment lasted a total of 32 days. 

 

B. PARTICIPANTS 
Participants were selected using four criteria.  First, each participant would 

normally stand a three-section watch because the experimental schedule was 

designed for a three-section watch.  Second, to minimize potentially confounding 

variables (such as extra time being spent on qualifications), participants should 

already be qualified in submarines.   Third, to obtain a representative sample of 

the crew on an 18-hour rotating schedule, each participant could not be a 

department head or a member of the command suite (CO, XO, COB, or EDMC).  

Lastly, the proportion of job ratings needed to be maintained as closely as 

possible to the actual crew composition.  For example, if Sonar Technicians 

comprised 10% of the crew, then roughly 10% of the 40 participants wearing 
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actigraphy monitors would need to be Sonar Technicians.  Once participants 

were screened using these restrictions, they were selected at random to be 

participants and informed consent was obtained. 

Participants for the at-sea trials portion of the experiment consisted of 

male volunteer crewmembers of the ballistic missile submarine USS HENRY M. 

JACKSON (SSBN 730 GOLD).  Participant ages ranged from 20 to 37 years, 

with the average age being 25.6 years, and they did not receive payment for their 

participation. 

 

C.  APPARATUS 
1. Actigraphy 

a. Wrist Activity Monitors (WAMs) 
Actigraphy was originally developed to objectively measure and 

quantify sleep prior to the development of polysomnographic techniques.  

Actigraphs (see Figure 7) are watch-like devices manufactured by Precision 

Control Design, Inc. which identify and store slight body movements using an 

accelerometer.  These devices, commonly referred to as wrist activity monitors or 

WAMs, can (roughly) discern whether or not the individual is sleeping by using 

approximations of the Cole-Kripke sleep-scoring algorithm (Cole et al., 1992) and 

the WRAIR Sleep Performance Prediction Model (SPM) (Redmond & Hegge, 

1985). 

 

Figure 7. A Typical SleepWatch-O 0.1 Actigraph. 
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The SleepWatch-O Actigraph has the ability to collect data in five 

modes: 1) Zero Crossing Mode (ZCM), 2) Time Above Threshold (TAT), 3) Dual 

(ZCM and TAT), 4) Proportional Integral Mode (PIM), and 5) PIM/ZCM/TAT 

(PZT).  The ZCM mode measures the frequency of movement, the TAT 

measures the time spent in motion or duty cycle, and the PIM measures 

accumulative activity level or vigor of motion (Nguyen, 2002).  The PZT was used 

in the data collected for this experiment.  However, only data from the ZCM mode 

using one minute epochs were used in the analyses.  WAMs were initialized and, 

following data collection, downloaded to a personal computer using an 

Ambulatory Monitoring, Inc., OS2K Reader interface. 

 

b. AMI ACT Millenium© Beta Version 3.5.13.2 
ACT Millennium© software, developed by Ambulatory Monitoring, 

Inc., was used to initialize and download actigraphy data.  Figure 8 presents an 

example of how actigraphy data appear once downloaded. 
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Figure 8. Sample Screen of ACT Millenium© Software. 
 

c. Action-W 2© Version 2.4.20 
Action-W 2©, a software program created by AMI, provides a 

Graphical User Interface (GUI) which enables a user to edit actigraphy data files.  

These files, created by the ACT Millenium© program, were used to obtain 

summary statistics for sleep and wake episodes.  This editing capability proved 

useful when the actigraphy coded very low activity periods as sleep (when it was 

clearly not warranted).  For example, if a wearer removed the watch, the sleep 

algorithm coded the period as sleep even though the individual was awake, thus 

introducing inaccurate data into subsequent effectiveness calculations.  Figure 9 

demonstrates such a scenario.  Activity, denoted by vertical black bars, is sorted 

into rows representing 24 hour periods.  Horizontal red lines placed beneath the 

activity represent periods coded as sleep.  The orange circle on Figure 9 

illustrates a period when the wrist activity monitor (WAM) was removed, and was 
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therefore originally coded as a sleep period.  Because the individual was awake 

during this time, the period was manually coded as a wake period, thereby 

removing an inaccurate horizontal red “sleep bar” beneath the data. 

 

Figure 9. Sample Screen of Action-W 2 © Software.  Circled period 
indicates a period when the wrist activity monitor was 
removed and had to be manually coded as wakefulness. 
 

d. Sleep Logs 
A sleep log was used to record significant events (such as 

removing the WAM, laying down for sleep, waking up, etc.).  These logs provided 

the ability to cross-reference activity levels during data cleaning.  Sleep logs 

consisted of a participant number, date, time of event, and the event.  Entries 

were color-coded for ease of reference.  White lettering indicates a recorded 

event.  Figure 10 is an example of one page of the sleep log. 
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Figure 10. A Sample Page of the Sleep Log Report. 
 

Each participant was also issued a Handspring ® Treo  Personal 

Digital Assistant (PDA) so they could track significant events including logs of 

their sleep.  These sleep logs were created on a PDA database program called 

HanDBase V3.0h by DDH Software, Inc.  Data could then be downloaded from 

the PDAs and transferred directly into Microsoft ® Access 2002 for cross-

reference. 

 

e. Fatigue Avoidance Scheduling Tool (FAST©) Beta 
Version 0.9.57 
The Fatigue Avoidance Scheduling Tool © (FAST) was created for 

Science Applications International Corporation (SAIC) and NTI, Inc.  The FAST© 

program utilizes the human sleep and performance SAFTE model (see page 16) 
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which serves as a fatigue avoidance decision aid for operational planning.  This 

model has been used extensively by the United States Air Force in aircrew 

mission planning.  An example of FAST’s graphical display is presented in Figure 

11. 

 

Figure 11. An Example of FAST’s Graphical Display of Daily 
Effectiveness. 

 
2. Surveys 
The demographic and exit surveys were designed by a group of four 

Naval Postgraduate School students prior to the at-sea trials portion of the 

experiment.  Both surveys used Microsoft ® Access 2002 and were designed to 

be taken by the crew on the ship’s computer network (LAN).  Survey questions 

were modified so that participants answered questions regarding the schedule 

they were on at the time of the assessment. 
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a. Demographic Survey 
The goal of the demographic survey was to collect basic 

information such as rank or rate, age, weight, height, department, medication(s), 

etc.  Appendix A contains a copy of the demographic survey. 

 

b. Exit Survey 
The goal of the exit survey was threefold: 

1. Assess the submarine crew’s sleep quality and fatigue on 

each watchstanding schedule, 

2. Determine if the experimental watchstanding schedule was 

operationally viable, and 

3. Assess the individual’s overall impression of the crew’s 

performance and schedule viability. 

 
D. PROCEDURE 

1. Actigraphy 
During the experiment, 41 participants were issued wrist activity monitors 

(WAMs).  Because of equipment failures and other problems, only 29 of the 41 

participants had contiguous actigraphy data covering the entire experimental 

period.  The data of these 29 participants were used in the analysis.  Of the 29 

participants, 11 were from the Engineering Department, 9 were from the 

Navigation Department, 7 were from the Weapons Department, and 2 were 

Junior Officers. 

 

2. Surveys 
Both the demographic and exits surveys were posted on the ship’s LAN 

and were available to be taken by the entire crew during the latter portion of the 

experiment.  Each crew member was assigned a participant number to ensure 

anonymity.  Overall, there were 107 respondents to the demographic survey and 

134 respondents to the exit survey. 
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Unfortunately, problems arose with the demographic and exit surveys 

during the experiment.  Because the surveys were designed with comparative 

analysis in mind, they were meant to be taken near the end of each schedule 

implementation during the experiment.  To eliminate the need for each participant 

to take the exit survey three separate times, both surveys were posted on the 

ship’s LAN with two days left on Schedule 2.  Since Schedule 1 had already been 

tested, Schedule 1 and Schedule 2 were both treated as a single experimental 

schedule.  Unfortunately, the majority of the surveys were completed with only 

three days left before the end of Schedule 3.  This created confusion among the 

participants who took the survey on the LAN, because they were not sure which 

schedule the survey was referring to since they already had completed three 

schedules.  Unfortunately, this confusion appeared to be reflected in a number of 

survey responses.  Figure 12 illustrates the misleading phrasing. 
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Figure 12. Illustration of Misleading Exit Survey Phrasing. 
 

In an attempt to alleviate some of this confusion and to maximize survey 

participation, participants were directed to answer the surveys as if they were on 

the experimental schedule and to use the final two open-ended questions to 

describe both what they liked and disliked about the experimental schedule.  

Despite these efforts, there were still survey responses which indicated the 

participant answered the questions according to the schedule they were currently 

on (in Figure 12, this was Schedule 3). 

 

3. Extraneous Data 
Other data were collected but not used in this analysis, specifically those 

items necessary to analyze circadian rhythm desynchrony.  Circadian markers, 
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such as melatonin (obtained via saliva samples), and body temperature readings 

(using oral thermometers), were collected from 10 participants.  In addition, an 

ARES performance battery, similar in function to the Psychomotor Vigilance Test 

(PVT), was undertaken by the participants wearing WAMs.  These data were not 

analyzed for this thesis.  Questions regarding this data may be directed to LT 

Chris Duplessis, M.D., NSMRL, Groton, Connecticut, Duplessis@nsmrl.navy.mil. 

 

E. DATA ENTRY AND FORMATTING 
1. Effectiveness 
Once the actigraphy data were edited using Action-W 2©, each file was 

saved as an “Epoch by Epoch” file (.ebe) for input into FAST©.  Before the data 

were analyzed by FAST©, a schedule template was created to reflect the study 

duration of 35 days (October 29, 2003 to December 2, 2003), and was used in 

the analysis of each participant’s data.  Automatic phase shift, a mathematical 

model used by FAST©, automatically adjusts the acrophase of the 24-hour 

rhythm based on the individual’s sleep schedule.  Location information was not 

used in the schedule because the enclosed submarine environment rendered it 

unnecessary due to the lack of zeitgebers, or environmental clues such as 

daylight and nighttime.  One precondition that was assumed in the FAST© 

analysis was that participants had slept from 2200 until 0600 for three 

consecutive days of preconditioning prior to the ship getting underway. 

Once the FAST© schedule template was created, the “Epoch by Epoch” 

actigraphy file was imported into FAST© in order to calculate predicted daily 

effectiveness.  Because of the large number of participants who appeared to 

experience fragmented sleep (evidenced by the large number of sleep intervals 

seen in FAST’s summary data tables), it became necessary to reduce FAST’s 

sleep interval resolution.  Dr. Steve Hursh, the developer of the FAST model, 

was consulted, and he suggested editing the schedule’s grid.  By assigning a 15-

minute block during which the participant was awake, and designating it as work, 

the model recalculated effectiveness by incorporating the binary sleep indicator 

into 15-minute blocks vice 1 minute blocks.  For example, a participant’s data 
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would have to be coded as sleep for at least 7.5 minutes of every 15-minute 

period for the FAST© model to have scored the entire 15-minute interval as 

sleep.  Forcing FAST© to recalculate effectiveness in this manner acted to 

smooth the data for fragmented sleepers, and in most cases, daily effectiveness 

in the FAST model noticeably increased. 

Once data smoothing was complete, FAST© effectiveness data (taken 

from the tabular view) was copied and pasted into Excel.  Using a separate 

worksheet for each participant, effectiveness was averaged by day and compiled 

into a data summary worksheet which incorporated all of the participants’ data.  

This data summary was then exported into S-Plus© as a data frame structure for 

analysis. 

 

2. Sleep Quantity 
Sleep quantity was obtained using the “edited AMI data file” created in 

Action-W 2©.  Clicking on “Statistics” on the toolbar yielded summary statistics, 

including daily sleep minutes, percent sleep, longest sleep episode, etc.  This 

tabular data set was saved as a text file, imported into Microsoft ® Excel 2000 (to 

allow daily sleep minutes to be arranged as an S-Plus© data frame), and then 

imported into S-Plus 2000© for subsequent analysis. 

 

3. Surveys 
Although 85 exit surveys were completed on the ship’s LAN, another 49 

had to be manually transferred into Microsoft ® Access 2002.  Once this transfer 

was complete, surveys were exported from Microsoft ® Access 2002 to Microsoft 

® Excel 2002.  Blank entries were coded as “NA” and responses such as “I don’t 

know” or the equivalent were coded as “DK”.  Multiple-choice and Likert scale 

questions were coded as ordinal (based on question phrasing), with lower 

numbers representing negative answers.  Because of the problems with the 

survey (as previously mentioned in Section D.2 of this chapter), a new column 

was created which represented whether or not it was possible to distinguish 
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whether the respondent favored an experimental watch schedule based on the 

open-ended question responses.  An additional column was created that 

represented whether or not conflicts existed between the “open-ended” and 

multiple-choice responses.  For example, a respondent would speak of the 

experimental schedule unfavorably in the “open-ended” questions, but his 

multiple-choice responses would indicate otherwise.  Finally, the Excel file was 

imported into S-Plus© for analysis as described in Chapter IV.B. 
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IV. RESULTS AND ANALYSIS 

A. OVERVIEW 
This section outlines the statistical analysis performed on the survey and 

actigraphy data described in Chapter III (Section D).  Section B (below) 

summarizes the findings of the analysis, while Section C gives the details of the 

analysis of the actigraphy and survey data. 

Actigraphy and FAST© data were used to test hypothesis 1, which states 

that submariners will be more effective on the experimental schedule.  Actigraphy 

data were also used to test hypothesis 2, which states that submariners would 

obtain more sleep on the experimental schedule.  Survey data and direct crew 

feedback were used to test both hypothesis 3 (which states that submariners 

would notice improvements in individual performance while on the experimental 

schedule), and hypothesis 4, (which states that the experimental watchstanding 

schedule would be compatible to an operational submarine environment). 

As mentioned previously in Chapter 0, schedule names are defined in the 

order they were implemented in the experiment.  Thus, Schedule 1 refers to the 

modified experimental schedule in which the 24-hour off period starts at midnight 

every 3 days.  Schedule 2 refers to the original experimental schedule in which 

the 24-hour off period starts at noon every 3 days.  And lastly, Schedule 3 is the 

normal 18-hour rotational watchstanding schedule currently used by U.S. 

submarine crews. 

 

B. RESULTS 
1. Hypothesis 1: Submariners Will be More Effective on the 

Experimental Schedule  
To test hypothesis 1, a linear multiple regression model was first used with 

FAST© effectiveness data to determine if the variables “Schedule” and 

“Participants” were significant factors.  The original effectiveness data set was 

modified to reduce the large variability between participants on the different 

schedules.  This was done by excluding the data for the first three days of each 
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schedule to allow for circadian acclimatization.  Variance was further reduced by 

removing the data of two participants who exhibited unusually large variance in 

their responses due to their studying for their watch station qualifications.  A 

linear mixed-effects model was then used to discern schedule differences. 

Hypothesis 1 was rejected.  Although a significant difference existed 

between the modified experimental schedule and the original experimental 

schedule ( 52 2.49t = , p = 0.0158, 0.05α = ), no significant difference existed 

between the normal submarine schedule and either the original experimental 

schedule ( 52 0.13t = − , p = 0.8944, 0.05α = ) or the modified experimental schedule 

( 52 1.97t = , p = 0.0537, 0.05α = ). 

 

2. Hypothesis 2: Submariners Will Acquire More Sleep on the 
Experimental Schedule 

Hypothesis 2 was tested in the same manner as hypothesis 1, with the 

exception that daily sleep minutes data was used in the linear mixed-effects 

model.  In order to accentuate existing differences between Schedule 2 and 

Schedule 3, sleep data for 4 participants was removed because it became 

apparent that these participants received “kick outs” (refer to page 3) during the 

times Schedule 2 and 3 were implemented. 

Hypothesis 2 was rejected.  On average, the normal submarine schedule 

added 49.41 minutes of daily sleep as compared to the modified experimental 

schedule ( 48 4.48t = , p<.0001, 0.05α = ) and 29.37 minutes as compared to the 

original experimental schedule ( 48 2.08t = , p=0.0430, 0.05α = ).  No significant 

difference existed between the modified and original experimental schedules 

( 48 1.51t = , p=0.1363, 0.05α = ). 

 

3. Hypothesis 3: Submariners Will Notice Improvements in Their 
Own Performance While on the Experimental Schedule 

Because of the discrepancy between the design of the exit survey and the 

manner in which it was implemented, the analyses to test hypotheses 3 and 4 
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were limited to descriptive statistics and correlations.  Because of this issue, 

however, more weight was placed on written and verbal crew feedback.  

Correlations between exit survey responses confirmed the crew’s written and 

verbal perception of the experimental schedules. 

Hypothesis 3 was rejected.  The exit survey demonstrated that only 15% 

of the respondents preferred one of the experimental schedules over the normal 

schedule, whereas 52% preferred the normal schedule.  The other 33% were 

either indifferent or it was impossible to determine their preference.  In addition, 

significant correlations (r ≥  0.5) demonstrated that those respondents who 

reported they did NOT like either experimental schedule also reported: 

Less time for physical training (r=0.551, p= 0.000, 0.05α = , N=130), 

Less free time (r = 0.550, p = 0.000, 0.05α = , N=130), and 

Less time to perform collateral duties (r=0.533, p=0.004, 0.05α = , N=130). 

 

4. Hypothesis 4: The Experimental Watchstanding Schedule Will 
Be Compatible to an Operational Submarine Environment. 

Hypothesis 4 was rejected.  Significant but weaker correlations (r ≥  0.3) 

showed that respondents who reported they did NOT like either experimental 

schedule also reported more difficulty in: 

Scheduling training (r=0.430, p = 0.000, 0.05α = , N=112), 

Scheduling maintenance (r=0.425, p = 0.000, 0.05α = , N=114), 

Performing administrative duties (r=0.352, p=0.000, 0.05α = , N=116), and 

Getting adequate rest (r=0.647, p = 0.000, 0.05α = , N=130). 

Direct feedback from the participating crew members (via written 

memorandums and a videotaped working group) confirmed that the experimental 

schedules did not provide the time needed to accomplish important tasks such as 

training, qualifications, drills, and perhaps most importantly, rest. 

 



44 

5. Summary 
Results of this study demonstrated that there were no significant 

improvements in either cognitive effectiveness or daily sleep while on the new 

schedule.  Additionally, a majority of the crew members did not like the new 

schedule.  The new schedule attempted to compress watch periods together in 

order to widen periods for contiguous sleep.  However, little collateral work was 

completed during the compressed watch period which meant unfinished work 

was carried over into the period set aside for sleep, defeating the intent of the 

new schedule’s design.  These results, taken together, demonstrated that the 

new schedule was not compatible with an operational submarine environment. 

 

C. DETAILS OF THE DATA ANALYSIS 
1. Effectiveness 

a. Descriptive Analysis 
Table 3 summarizes the daily FAST© effectiveness distribution for 

all participants on all schedules.  The overall distribution in Figure 13 appears to 

be slightly left skewed. 
 

Summary Statistics 
Daily 

Effectiveness (%) 
     Min 23.76 

 1st Qu. 72.46 
    Mean 77.62 
  Median 79.29 
 3rd Qu. 84.95 
     Max 97.20 

Std Dev. 10.32 

Table 3. Summary Statistics of Average Daily 
Effectiveness Over All Participants and 
Schedules. 
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Figure 13. Histogram of Daily Effectiveness of All 
Participants and Schedules. 

 
A boxplot illustrating the distribution of the average daily FAST© 

effectiveness for each participant is shown in Figure 14.  Participants 7 and 21 

have noticeably lower effectiveness than the rest of the sample.  Further 

investigation revealed that these participants were both junior crew members 

pursuing qualifications for their respective watch stations. 
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Figure 14. Box Plot of Daily Effectiveness by Participant. 
 

Figure 15 illustrates the average daily predicted effectiveness of 

each participant by schedule.  Average daily effectiveness ranges from 40% to 

90%.  No pattern readily emerges, except for the fact that Schedule 2 rarely 

appears to result in the highest daily effectiveness for any participant.  Therefore, 

statistical model-fitting was used in an attempt to reveal any patterns or factors 

that contribute to differences in daily effectiveness.  Model-fitting also made it 

possible to discern whether or not any schedule differences existed by 

conducting hypothesis tests on model parameters. 
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Figure 15. Average Daily Effectiveness per Schedule by 

Participant. 
 

b. Model Fitting 
(1) Data Exploration.  In order to determine if there was a 

schedule acclimatization effect (refer to II.B.2), a linear multiple regression model 

was fitted using “Days” and “Participants” as categorical variables.  The variable 

“Days” was simply the days of the experiment numbered consecutively.  For 

example, Schedule 1 was implemented during days 1 through 14, Schedule 2 

days 15 through 20, and Schedule 3 days 21 through 32.  Due to the ordinal 

relationship between variables “Days” and “Schedule”, they formed nonsingular 

columns within the data. 

A plot was obtained using the daily predicted effectiveness 

from the model and using Day and Participant as factors.  As shown in Figure 16, 

a noticeable downward trend existed among the first three or four days on each 
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schedule.  This downward trend is to be expected since it takes a few days for 

the participants to adjust to each schedule.  Thus, we excluded the first three 

days of data to allow for schedule acclimatization.  Three days vice four was 

chosen in order to ensure enough data were available for Schedule 2 (there was 

originally only 6 days of data). 

 

 

Figure 16. Predicted Performance Using Factors Day and 
Participant. 

 
(2) Linear Mixed-Effects Model.  After schedule 

acclimatization and extreme outliers were taken into account, a model was found 

in which both the variables Participant and Schedule were significant factors and 

there was a statistically significant difference between schedules.  Unfortunately, 

we could not determine which schedule was best.  This was due to the fact there 

was significant participant-schedule interaction.  This interaction and the 

difficulties with the experimental design may have obscured systematic 
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differences between schedules.  A new model must be used in order to separate 

participant-schedule interactions to look only at Schedule effects. 

The linear mixed-effects model applies nicely to this 

experiment because it includes a repeated-measures design.  This model was 

used to treat Schedule as a fixed effect, and the effects of Participants and the 

interaction between the two as random (Mathsoft, 2000).  The fixed-effect 

variable Schedule is the repeated factor of interest.  The variable Participant is a 

random effect because participants were randomly assigned, with departments 

proportionally represented.  This model is described by Equation (1) below. 

(1)

{ }
{ }
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Thus, we wish to test the hypothesis that there is no 

difference between schedules.  In other words, 11 12 13β β β= = .  We can now 

analyze fixed schedule effects separately from random participant effects. 
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Before continuing with the hypothesized model, it was 

necessary to perform diagnostics in order to test the performance of the model 

and validity of our assumptions.  A plot of the model’s residuals is presented in 

Figure 17.  There do not appear to be signs of heteroskedasticity or unusually 

large variance (as had been the case when participants 7 and 21 were included).  

The residual plot confirms a good model fit.    
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Figure 17. Residual Plot of Daily Effectiveness Linear Mixed-
Effects Model. 

 

Figure 18 is a standardized residual box plot used to 

investigate the model assumption 2~ (0, )ijk Nε σ .  Residuals appear to be 

symmetrically distributed around zero with similar variability, with the exception of 

participant 26.  Therefore, model diagnostics of the residuals indicate this model 

provides a good fit of the data. 
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Figure 18. Standardized Residual Box Plot of Daily Effectiveness 
Linear Mixed-Effects Model. 

 

Fitting the model using S-Plus 2000© with the modified data 

set obtained from the multiple linear regression, an ANOVA shows Schedule as a 

significant fixed effect ( 2,52 3.21F = , p = 0.048, 0.05α = ).   Having determined that 

there was a difference between schedules, a comparison of 1iβ ’s must be made 

to find which schedules are different. 

Table 4 illustrates results from the model with Schedule 1 as 

the reference schedule ( 11β =0).  The t value for 12β  (Schedule 2) is 2.49 

( 52 2.49t = , p = 0.0158, 0.05α = ), which means it contributes 2.49% to daily 

effectiveness, on average, as compared to Schedule 1.  Similarly, Schedule 3 

adds 2.36% to daily effectiveness, on average, as compared to Schedule 1 

( 52 1.97t = , p = 0.054, 0.05α = ). 
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                Value Std.Error DF t-value p-value 

(Intercept) 77.66101 1.679669 540 46.23589 <.0001 

  Schedule2 2.48809 0.997334 52 2.49474 0.0158 

Schedule3   2.36413 1.197722 52 1.97385 0.0537 

Table 4. Linear Mixed-Effect Model Results for Daily Effectiveness with 
Schedule 1 as Reference Schedule. 
 

In order to compare Schedules 2 and 3, the model was used 

again, except with Schedule 2 as the reference schedule.  These results are 

posted in Table 5 below.  As can be seen from this table, the difference between 

Schedule 2 and Schedule 3 was not statistically significant ( 52 0.13t = − , p = 

0.8944, 0.05α = ). 

 

 Value Std.Error DF t-value p-value 

(Intercept) 80.14909 1.223475 540 65.50937 <.0001 

  Schedule3 -0.12396 0.929547 52 -0.13335 0.8944 

  Schedule1 -2.48809 0.997484 52 -2.49436 0.0158 

Table 5. Linear Mixed-Effect Model Results for Daily Effectiveness with 
Schedule 2 as Reference Schedule. 
 

2. Sleep Quantity 
a. Descriptive Analysis 
Table 6 summarizes the daily distribution of minutes of sleep for all 

participants and schedules.  The overall distribution depicted in Figure 19 

appears to be slightly skewed to the right, which indicates several instances of 

participants choosing to “sleep in” when given the opportunity. 
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Summary Statistics 

Daily Sleep 
(minutes) 

     Min 0.0 
 1st Qu. 290.0 
    Mean 399.8 
  Median 385.5 
 3rd Qu. 490.0 
     Max 1032.0 

Std Dev. 153.6 

Table 6. Summary Statistics of Daily Sleep for All Participants 
and Schedules. 

 

Figure 19. Histogram of Daily Sleep of All Participants and 
Schedules. 

 
Statistics for daily sleep minutes (by schedule) can be seen in 

Table 7.  Mean average daily sleep is greatest for the normal submarine 

watchstanding schedule.  The relatively large standard deviation values indicate 

considerable variability exists in the data.   
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Daily Sleep 
Minutes: 

 

Mean 

 

Std.Dev. 

 

Minimum 

 

Maximum 

 

N 

Schedule 1 378.80 135.89 52 778 406 

  Schedule 2 399.71 181.07 47 929 174 

  Schedule 3 424.44 154.92 0 1032 348 

Table 7. Summary Statistics of Daily Sleep Minutes by Schedule. 
 

A plot which illustrates mean daily sleep minutes by schedule and 

participants is presented in Figure 20.  As would be expected from the large 

standard deviations, average sleep varies widely by participants on a given 

schedule, much like average daily effectiveness in Figure 15.  As large data 

variation between schedules is desired during data fitting, the small difference in 

daily sleep between Schedules 2 and 3 for participants 29, 9, 17, and 32 proved 

to be important during subsequent model fitting. 



55 

 

Figure 20. Average Daily Sleep per Schedule by Participant. 
 

A boxplot illustrating the distribution of daily sleep for each 

participant can be seen in Figure 21.  The data from Participants 7 and 28 stands 

out from the other participants.  While most of the observations are between 200 

and 500 minutes, there does not appear to be any significant anomalies within 

the sleep data distribution for this sample. 
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Figure 21. Box Plot of Daily Sleep by Participant. 
 

b. Model Fitting 
The linear mixed-effects model used in section 1.b(2) was applied 

to the sleep quantity data, except that Daily Sleep Minutes (smin) was now the 

dependent variable instead of Daily Effectiveness.  The independent variables 

Schedule and Participant remained the same.  To test the hypothesis that there 

were no differences between schedules (in other words, 11 12 13β β β= = ), fixed 

Schedule effects can again be analyzed separately from random participant 

effects. 

However, as before, we again perform diagnostics in order to test 

model performance and assumption validity.  A plot of the model’s residuals is 

shown in Figure 22.  There do not appear to be any indications of 
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heteroskedasticity.  Therefore, the residual plot helps confirm the goodness of 

model fit due to uniformly random appearance of 2~ (0, )ijk Nε σ . 

 

Figure 22. Residual Plot of Sleep Quantity Linear Mixed-Effects 
Model. 

 

Figure 23 presents a standardized residual box plot useful in testing 

the model assumption that 2(0, )ijk Nε σ∼ .  The residuals appear to be 

symmetrically scattered around zero and display similar variability (with the 

possible exception of participant 28).  As before, diagnostics of the residuals 

indicate this model provides a good fit of the data. 
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Figure 23. Standardized Residual Box Plot of Sleep Quantity Linear 
Mixed-Effects Model. 

 

Fitting the model using S-Plus 2000© using the full data set for 

Daily Sleep Minutes (smin), an ANOVA shows Schedule as a significant fixed 

effect ( 2,56 10.27F = , p = 0.0002, 0.05α = ).  The null hypothesis was rejected, 

indicating that a difference exists between Schedules 1 and 3 ( 56 4.53t = , 

p<.0001, 0.05α = ).  However, it was not possible to reject the null hypothesis 

that no difference exists between Schedules 2 and 3 ( 56 1.93t = , p=.0590, 

0.05α = ), although a trend exists.  As was done previously in fitting the model for 

daily effectiveness, a subset of the data was utilized, along with an explanation 

for doing so.  

As mentioned before, Participants 9, 17, 29, and 32 had few 

differences in daily sleep for both Schedules 2 and 3.  Upon closer inspection of 
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the actigraphy data for these participants, it became apparent that these 

participants received “kick outs” (see Chapter I.E) when Schedule 2 and 3 were 

being implemented.  The modified three-section watch rotation these participants 

were in may help explain the small differences in schedules.  Excluding these 

four participants from the data set and re-fitting the model, the ANOVA again 

shows Schedule as a significant fixed effect ( 2,48 10.03F = , p = 0.0002, 0.05α = ).  

Table 8 illustrates the model results using Schedule 1 as the reference schedule 

( 11 0β = ).  No significant difference existed between Schedules 1 and 2.  On the 

other hand, a significant difference existed between Schedules 1 and 3.  

Schedule 3 (the normal submarine schedule) adds 49.41 minutes to daily sleep, 

on average, as compared to Schedule 1 (the modified experimental schedule). 

 

 Value Std.Error DF t-value p-value 

(Intercept) 375.3400 15.97742 725 23.52319 <.0001 

Schedule2 20.0400 13.22761 48 1.51501 0.1363 

Schedule3   49.4067 11.03054 48 4.47908 <.0001 

Table 8. Linear Mixed-Effect Model Results for Sleep Quantity with 
Schedule 1 as Reference Schedule. 
 

In order to compare Schedules 2 and 3, the model is again fitted 

with Schedule 2 as the reference schedule.  These results are presented in Table 

9.  As can be seen, Schedules 2 and 3 are now significantly different, indicating 

that Schedule 3 (the normal submarine schedule), increases daily sleep, on 

average, by 29.37 minutes as compared to Schedule 2 (the experimental 

schedule). 
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 Value Std.Error DF t-value p-value 

(Intercept) 395.8800 17.79942 725 22.24118 <.0001 

  Schedule3 29.3667 14.12753 48 2.07868 0.0430 

  Schedule1 -20.0400 13.36939 48 -1.49895 0.1404 

Table 9. Linear Mixed-Effect Model Results for Sleep Quantity with 
Schedule 2 as Reference Schedule. 

 

3. Schedule Compatibility 
As mentioned previously (Chapter III), the exit survey was originally 

designed to compare two schedules, not three.  Because of this, any analysis of 

these surveys must be approached with caution, because respondents may not 

have understood which schedule the exit survey was referring to.  For example, 

for the responses of 44 of the 134 participants, it was impossible to determine 

which schedule they were referring to when the exit survey was completed.  For 

the remaining 90 respondents, there were approximately 24 surveys containing 

conflicting answers between the open-ended and the multiple choice responses.  

The resulting uncertainty regarding respondent intentions renders any 

interpretation of the cross tabulations meaningless.  In addition, testing more 

than two schedules eliminates the possibility of using more powerful comparative 

statistical methods, such as paired t-tests, as was intended when the exit survey 

was designed.  Consequently, in order to test hypothesis 1 and 2, we must rely 

on descriptive statistics, correlations, and direct feedback from the participating 

crew. 

 

a. Descriptive Analysis 
A majority of the crew was on a three section watch rotation (Table 

10).  This proportion was desirable because the experimental schedule was 

designed to assess those in a three section watch rotation. 

 

 



61 

 

Watch Rotation Percentage of Respondents 

Two Section 10% 

Three Section 72% 

Four Section 8% 

More than Four Section 5% 

Non-responses 5% 

Table 10. Watch Rotation Distribution of Exit Survey 
Respondents. 

 

The proportion of departments that participated is presented in 

Table 11 below (the sum of percentages exceeds 100% due to rounding). 

 

Department Percentage of Respondents 

Engineering 39% 

Weapons 28% 

Navigation 17% 

Supply 1% 

Executive 4% 

Officers 4% 

Non-responses 8% 

Table 11. Proportion of Departments Represented in the Exit 
Survey. 

 

Open-ended responses were used to determine whether or not the 

respondent liked any of the experimental watchstanding schedules.  In addition, 

surveys which exhibited apparent conflicts between open-ended and multiple 

choice responses were excluded when determining the proportion of 

respondents who preferred one of the experimental schedules over the normal 
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schedule (Table 12).  With the 24 conflicting surveys excluded, a majority of the 

crew preferred the normal submarine schedule. 

 

Preferred Schedule Percentage of Respondents 

Normal Schedule 52% 

Experimental Schedule 15% 

Indeterminate 33% 

Table 12. Proportion of Schedule Preference, Excluding 24 Survey 
Conflicts. 

 

b. Correlations 
Pair-wise Pearson correlations between each exit survey response 

were computed using SPSS Version 12.  Strong correlations (r ≥  0.5) 

demonstrate that those respondents who reported they did NOT like either 

experimental schedule also reported: 

• Less time for physical training (r=0.551, p= 0.000, 0.05α = , N=130), 

• Less free time (r = 0.550, p = 0.000, 0.05α = , N=130), and 

• Less time to perform collateral duties (r=0.533, p=0.004, 0.05α = , 

N=130). 

In addition, other significant but weaker correlations (r ≥  0.3) show 

that respondents who reported they did NOT like either experimental schedule 

also reported more difficulty in: 

• Scheduling training (r=0.430, p = 0.000, 0.05α = , N=112), 

• Scheduling maintenance (r=0.425, p = 0.000, 0.05α = , N=114), 

• Performing administrative duties (r=0.352, p=0.000, 0.05α = , N=116), 

and 

• Getting adequate rest (r=0.647, p = 0.000, 0.05α = , N=130). 
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c. Direct Crew Input 
Direct feedback from the crew was very helpful and offered insights 

into understanding how crews adapt to experimental schedules in an operational 

submarine environment.  One important feedback instrument included a 

memorandum submitted by SKCM(SS) Gregg Weber at the end of the 

experiment. 

(1) Chief of the Boat Memorandum.  The crew’s Chief of 

the Boat (COB), or the senior enlisted man onboard a submarine, submitted a 

memorandum dated 02 December 2003 to the Undersea Medical Officer, LT 

Chris Duplessis, who was involved in the experiment.  This memorandum 

outlined some of the experimental schedule pitfalls and the experiences of crew 

members. 

One major point introduced in the memorandum was the use 

of those personnel who are in the 24-hour off-watch period.  The COB stated that 

he had to assign these personnel duties he would normally assign to those who 

had just finished standing watch (on a normal submarine schedule); otherwise 

known as “off-going assistance”.  These duties included ship cleanup, “de-

rigging” the bridge (when the sub is on the surface getting ready to submerge), 

force protection watches, casualty response, and other major maintenance items 

including motor-generator cleaning, etc. 

The COB also noticed effects in the following areas while on 

the experimental schedules: 

• Workout areas were often empty 

• Qualification progress halted 

• Administrative work fell behind. 

These observations were similar to those obtained in the correlational analysis.  

Also, individual qualifications are usually pursued during a crewmember’s free 

time, leading one to speculate that the crew had less free time on the 

experimental schedules. 
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(2) Working Group Meeting.  Another feedback session 

was a working group meeting that convened four months after the completion of 

the experiment.  This meeting convened on 04 March 2004 at Naval Submarine 

Base, Bangor, Washington.  Attendees included researchers from the Naval 

Submarine Medical Research Laboratory (NSMRL), the Naval Postgraduate 

School (NPS), and nine volunteer members from the USS HENRY M. JACKSON 

(SSBN 730 GOLD).  Key personnel from the participating submarine included 

LCDR Kevin Kinslow, the ship’s Executive Officer (XO), and the aforementioned 

COB, SKCM(SS) Gregg Weber. 

Crew feedback, as taken from the minutes of the working 

group meeting, confirmed what has already been presented.  The negative 

sentiments of the crew reflected their feelings that the experimental schedules 

did not provide the time needed to accomplish important tasks, including training, 

qualifications, drills, and perhaps most importantly, rest. 
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V. DISCUSSION AND RECOMMENDATIONS 

A. DISCUSSION 
1. Effectiveness 
Although Figure 15 on page 47 gives a graphical display of average daily 

effectiveness for each participant, Table 13 (below) summarizes average daily 

effectiveness for all participants and days by schedule.  As noted in the previous 

chapter, there is considerable variance in effectiveness results between 

participants and schedules.  Regardless, it should be noted that the sample 

mean effectiveness for each schedule is near 77% which indicates substantial 

sleep deprivation.  As can be seen from Figure 5 on page 18, a mean speed 

slightly above 80% (as measured by a PVT which roughly equates to predicted 

effectiveness) was achieved by the group restricted to 5 hours of nightly sleep.  

As was mentioned previously in II.D, chronic restriction of sleep to 6 hours or less 

per night produces cognitive performance deficits equivalent of up to 2 nights of 

total sleep deprivation (Van Dongen et al., 2003, Belenky et al., 2002). 

 

Table 13. Average Daily Effectiveness by Schedule. 
 

Based upon the summary statistics above, submariner participants for this 

experiment appear, on average, to be sleep deprived even on their normal 

watchstanding schedule (using the 78% threshold the Air Force incorporates in 

scheduling flight hours via personal communication with J.C. Miller, March 4, 

2004).  It can be reasonably argued that standing watch on a submarine can be 

as mentally taxing as flying a jet aircraft.  Although arduous training programs 

and strict discipline have given the U.S. submarine force an impeccable safety 

 Schedule 1 Schedule 2 Schedule 3 

Mean Daily Effectiveness (%) 76.83 77.96 78.39 

Standard Deviation (%) 10.79 9.61 10.07 

N 406 174 348 
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record, it is apparent, in at least this case, that cognitive effectiveness has room 

for improvement. 

Unfortunately, neither experimental schedule helped increase submariner 

cognitive effectiveness.  Although Schedule 2 increased effectiveness by 0.12%, 

on average, schedule and participant interactions were non-significant.  

However, there may be schedules which can deliver similar or improved 

individual effectiveness, particularly compared to current fleet practices.  A 

schedule which minimizes sleep deprivation would help to reduce degraded 

performance, work dissatisfaction, and chronic health problems. 

 
2. Sleep Quantity 
Table 7 on page 54 illustrates that the mean daily sleep was 424.4 

minutes (slightly below 7.1 hours) on the normal schedule.  This finding is 

consistent with those found by Kelly et al. (1996).  Although being required to 

sustain operations on this amount of sleep may appear acceptable, it has been 

proven (at least experimentally) that even this amount of sleep can degrade 

cognitive performance (Belenky et al., 2002).  Table 1 on page 8 shows that an 

operational schedule should ideally strive for an average of 8 hours of daily 

sleep.  As the results from Table 7 illustrate, none of the schedules tested in this 

study consistently allowed the desired 8 hours of sleep, although the normal 

submarine schedule came closest.  Thus, improvements in the current schedule 

need to be made to increase sleep quantity to recommended levels in order to 

minimize the consequences of sleep deprivation (as outlined in Chapter II.D). 

 

3. Schedule Compatibility 
The negative sentiments expressed by the crew suggest that the 

experimental schedules did not provide the time needed to accomplish important 

operational tasks (e.g., training, qualifications, and drills).  Comments made in 

exit surveys indicated that it was difficult for the participants to adjust to the 

experimental schedules.  However, a negative bias toward any schedule 

changes may have affected the crews’ perceptions, given that more than one 
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experimental schedule was tested.  Having the crew attempt to adapt to three 

different schedules in a relatively short period of time (32 days) may not have 

allowed a number of individuals to adapt to any schedule, and may have resulted 

in their negative comments. 

Results of this study demonstrated that there were no significant 

improvements in either cognitive effectiveness or daily sleep while on the new 

schedule.  Additionally, a majority of the crew members did not like the new 

schedule.  The new schedule attempted to compress watch periods together in 

order to widen periods for contiguous sleep.  However, little collateral work was 

completed during the compressed watch period which meant unfinished work 

was carried over into the period set aside for sleep, defeating the intention of the 

new schedule’s design.  These results, taken together, demonstrated that the 

new schedule was not compatible with an operational submarine environment. 

 
B. RECOMMENDATIONS 

Although this at-sea trial of the experimental schedules was unsuccessful 

in demonstrating improvements in submariner effectiveness and sleep hygiene, 

this study has contributed to the sleep literature by highlighting the intricately 

related operational constraints imposed on U.S. submariners and the effects of 

various watchstanding schedules.  The contributions of this study will allow future 

schedules to be better suited to the operational submarine environment. 

The results of this study illustrate that a need exists among the U.S. 

submarine force to improve upon current watchstanding schedules.  A 

watchstanding schedule which allows for both better sleep hygiene and more 

time to complete required work should continue to be investigated.  Such a 

schedule may increase tangible rewards for an individual, such as improved 

memory and cognitive effectiveness, but may also improve other, intangible 

factors, such as quality of life, morale, and the retention of qualified personnel. 

The following recommendations were developed by members of the 

scientific and military communities present at a working group meeting conducted 
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on March 4th and 5th, 2004 (see Chapter IV.C.3.c(2)).  This group concluded that 

the primary lessons learned from this study that should be implemented in the 

future include: experimental implementation, the need for sleep hygiene 

education, and several follow-on studies. 

 

1. Experimental Implementation 
As was mentioned previously, all participants in this study were members 

of a U.S. ballistic missile submarine (SSBN), and no data were obtained from 

crew members onboard a fast attack submarine (SSN).  Due to the differences 

between missions and schedules for these two platforms, it is possible that 

different results might have occurred had this study taken place on a fast attack 

submarine.  This should be considered when developing and testing alternative 

watchstanding schedules. 

In order to alleviate possible confusion, future research should ensure that 

training, drills, and other scheduling needs are worked out in advance prior to the 

boat getting underway.  Bias in the crew’s perception of the experimental 

schedule would be minimized, as there would be fewer unexpected alterations or 

modifications to the experimental schedule. 

The harsh working environment aboard a submarine poses a risk for 

delicate electronic equipment and several WAMs failed during the experiment.  

Twelve of the 41 WAMs experienced a failure of some kind, which, in turn, limited 

the data available for analysis.  Future studies should assume the loss of a 

number of WAMs, and should plan for this attrition by oversampling. 

As was mentioned in III.D.2, exit survey question phrasing was confusing 

for some individuals.  Future research should reword the exit survey such that it 

would only have to be taken once.  The exit survey wording should ensure that 

respondents are not confused about the match between schedules and particular 

questions. 
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2. Education 
Fatigue management should be incorporated into the education that the 

submarine community receives in both officer and enlisted submarine schools.  

This training should make officers and enlisted aware of the causes, symptoms, 

and dangers of a sleep-deprived crew.  Some ways a supervisor can effectively 

manage fatigue among personnel are outlined below by Chapman (2001, pp. 23-

24): 

• Allow time for adequate sleep prior to coming on watch 

• Avoid assigning personnel who are in need of sleep non-urgent tasks 

during off-watch periods 

• Allow frequent breaks and task rotation to alleviate strain and 

boredom.  Monitoring tasks should be no more than four hours in 

length to sustain operator vigilance 

• Encourage personnel to utilize off-watch periods to obtain adequate 

sleep 

• Lead by example. 

 

3. Suggested Follow-on Studies  
a. Critical Watchstanding Task and Risk Factor Analysis 
As mentioned in the Minutes of the At-Sea Watchstanding Trials 

Working Group Meeting (Duplessis, 2004), a task and risk factor analysis of 

various watch stations should be undertaken.  The goal of this research would be 

to identify the critical watch stations where errors could cause or lead to 

catastrophic outcomes.  Focused interventions, such as establishing 

recommended guidelines for minimum sleep requirements (Chapman, 2001) or 

rating-specific schedules, could then be implemented.  In addition to focused 

interventions, performing a task analysis could also suggest recommendations 
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on manning requirements prior to a submarine getting underway (e.g., prohibiting 

two-section watch rotations in identified critical positions). 

 

b. Testing Other Experimental Schedules 
Three alternative watch schedules are currently being considered 

for future testing, including: fixed, 8-hour schedule; a compensated 6-hour 

“dogged” schedule; and a fixed, 6-hour “dogged” schedule (Duplessis, 2004, p. 

A-1).  A “dogged” schedule involves splitting difficult watch periods between two 

or more watch sections in order to minimize fatigue effects and maintain 

alertness on a particular watch section.  If a future laboratory-derived watch 

schedule is obtained, it should be presented to the fleet for a review of its 

operational feasibility prior to conducting at-sea trials with an operational 

submarine. 
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APPENDIX A DEMOGRAPHIC SURVEY 
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APPENDIX B EXIT SURVEY 
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